Aufgaben: Röntgenspektrum

Mit der folgenden Experimentieranordnung können die Spektren einer Röntgenröhre mit Kupferanode oder Chromanode bei verschiedenen Beschleunigungsspannungen aufgenommen werden. Für die Messung der Intensität eines Wellenlängenbereiches wird die BRAGG-Reflexion an einem Kristall (Netzebenenabstand 210 pm) verwendet.

Grundlegende Aufgaben (G)

- 1. Wählen Sie das Anodenmaterial der Röntgenröhre aus. Nehmen Sie anschließend das Spektrum Impulse = f (Wellenlänge) für 2 verschiedenen Spannungen auf. Vergleichen Sie ihre Ergebnisse.
- Lesen Sie die Grenzwellenlängen der Röntgenbremsstrahlung für beide Röntgenspektren aus Ihrer Darstellung ab. Überprüfen Sie die abgelesenen Werte durch Berechnungen.
- 3. Lesen Sie die Wellenlängen der Maxima der charakteristischen Röntgenstrahlung für beide Röntgenspektren aus Ihrer Darstellung ab.

Ergänzende Aufgaben (E)

1. Mit dem Gesetz von MOSELEY können die Wellenlängen der charakteristischen Röntgenstrahlung auch theoretisch ermittelt werden.
Überprüfen Sie unter Verwendung dieses Gesetzes die abgelesenen Werte.

$$\frac{1}{\lambda} = R \cdot \left(Z - 1\right)^2 \cdot \left(1 - \frac{1}{n^2}\right)$$

R: RYDBERG Konstante

Z: Kernladungszahl Anodenmaterial

n: 2, 3, ...